Power Series for Elementary Functions	Interval of Convergence
$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$	(-1, 1)
$\ln x = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{(x-1)^n}{n} = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} + \cdots$	(0, 2]
$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$	$(-\infty, \infty)$
$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$	$(-\infty, \infty)$
$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$	$(-\infty, \infty)$
$\tan^{-1} x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$	[-1, 1]
$\sin^{-1} x = \sum_{n=0}^{\infty} \frac{(2n)! x^{2n+1}}{(2^n n!)^2 (2n+1)} = x + \frac{x^3}{2 \cdot 3} + \frac{1 \cdot 3x^5}{2 \cdot 4 \cdot 5} + \frac{1 \cdot 3 \cdot 5x^7}{2 \cdot 4 \cdot 6 \cdot 7} + \cdots$	[-1, 1]

Taylor's Theorem

If a function f is differentiable through order n+1 in an interval I containing c, then, for each x, in I, there exists z between x and c such that

$$f(x) = f(c) + f'(c)(x-c) + \frac{f''(c)}{2!}(x-c)^2 + \dots + \frac{f^{(n)}(c)}{n!}(x-c)^n + R_n(x)$$

$$f^{(n+1)}(z) \xrightarrow{n+1}$$

Where $R_n(x) = \frac{f^{(n+1)}(z)}{(n+1)!} (x-c)^{n+1}$.

Lagrange Form of the Remainder

$$|R_n(x)| \le \frac{|x-c|^{n+1}}{(n+1)!} \max |f^{(n+1)}(z)|$$

Where $|f^{(n+1)}(z)|$ is the maximum value of $f^{(n+1)}(z)$ between x and c.